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ABSTRACT

Photovoltaics (or solar cell) has been an active area for research and development, driven by

the world’s constantly increasing needs for power. Among the current solar technologies, thin

film solar cell promises lower cost, but at the expense of lower power conversion efficiency. The

efficiency of thin film solar cell can be improved using light confinement schemes commonly

referred to as light-trapping. In this thesis, we develop novel light-trapping schemes utilizing

photonic crystals (PCs). The optical modeling is performed with a rigorous scattering matrix

approach, where Maxwell’s equations are solved in Fourier space, and simulations are carried

out on parallel computation environment. Although the concepts apply to any thin film solar

cell structures, hydrogenated amorphous silicon (a-Si:H) single junction thin film solar cell is

used for simulation due to widely available optical property data.

In the solar cell structure we design, a one dimensional (1D) photonic crystal or distributed

Bragg reflector (DBR) is used as back reflector. The DBR consists of alternating layers of

SiO2 and Si or Indium Tin Oxide (ITO) and Si to provide high reflectivity with little loss.

A layer of two dimensional (2D) photonic crystal slab between the a-Si:H absorber layer and

the DBR can diffract light at oblique angles, so that total internal reflection can occur inside

the absorber layer. The light path length inside the absorber layer will be greatly increased,

so will the absorption. The parameters for photonic crystals are optimized through computer

simulations to obtain the maximum absorption and path length enhancement. The simulations

show significantly enhanced photon harvesting between 600 – 775 nm below the band edge.

The path length enhancement can reach several hundred at resonant peaks, far exceeding the

classical limit predicted for randomly roughened scattering surfaces.



www.manaraa.com

1

CHAPTER 1 GENERAL INTRODUCTION

Thin Film Solar Cells

Thin film solar cells are usually produced by physical or chemical deposition techniques,

which can be easily applied to large areas and fast throughput. Thin film technology is of

much commercial interests because it offers lower costs and possibilities for mass production

and deployment. Among all the thin film materials, amorphous silicon is the most developed

one, and has been in commercial production since 1980 [1]. We choose a-Si:H as prototype

material for this study due to better understanding of the material properties and widely

available optical data.

The basic a-Si:H solar cell structure is p-i-n junction shown in figure 1.1a. The minority

carrier diffusion length in undoped a-Si:H is typically around 0.1 µm [1], so an electric field

needs to be created in the intrinsic layer to separate and collect the photo-generated electron-

hole pairs. The p-i-n solar cell should be designed such that the depletion width is greater

than the intrinsic layer thickness and the built-in electric field is across the entire intrinsic layer

(Fig. 1.1b). For this reason, the thickness of the intrinsic layer in a p-i-n structure is limited

to around 500 nm. The small amount of material used in amorphous silicon solar cells lower

the cost substantially. In contrast a large amount of material (> 10 µm in thickness) is needed

for crystalline silicon solar cells where the optical absorption is much weaker.

Light trapping is the standard technique for improving the thin film solar cell efficiencies

and for harvesting the spectrum of incoming sunlight. Since amorphous silicon and most com-

mon semiconductor materials have a high refractive index at optical wavelengths, considerable

amount of light is reflected from the top surface of the film. The first optical enhancement

technique commonly used is to employ an anti-reflective coating layer placed on the top of the
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Figure 1.1 a) The schematics of a p-i-n juncture solar cell. b) The band
diagram of a p-i-n juncture solar cell

solar cell absorber layer. The thickness of the coating is approximately quarter wavelength in-

side the dielectric, so that the reflected waves will interference destructively. In state-of-the-art

solar cells, and in our simulation, ITO is used as both anti-reflective coating and top contact

for the solar cell.

The second optical enhancement technique is to use a high reflectivity mirror at the back

that will prevent the light escaping from the rear surface and double the light path. The rear

surface is typically metalized with aluminum or silver and can provide reflectivity of over 95%.

However two optical passes are not adequate to absorb photons with large absorption lengths

and a critical technique is light-trapping where the optical path length or photon dwell-time

is increases within the absorber layer. The common light-trapping technique in solar cells is

to utilize a textured back reflector to reflect the incoming light at an oblique angle. As long

as the light can deviate from the normal direction larger than the critical angle, total internal

reflection can occur at the top surface and the light path can be further increased. In the case
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the amorphous silicon, the critical angle is around 14◦.

A perfect randomly roughened back surface (a Lambertian surface) can reflect light into all

angles with equal possibility. For this ideal surface, the predicted path length enhancement is

4n2 times the thickness of the solar cell, where n is the refractive index of the semiconductor,

corresponding to around 50 in silicon [2]. A popular texturing scheme is using roughened

silver reflectors coated with ZnO [3]. Such textured metallic reflectors suffer from intrinsic

losses from surface plasmon modes generated at the granular metal-dielectric interface. Such

losses can be 3% to 8% with each light pass at 650 nm for different surface roughness [3] and

can accumulate rapidly and become even more severe at longer wavelengths. For example in

the regime of long absorption lengths a loss of L with each reflection can lead to a loss of

1 − (1 − L)n with n passes. For L = 5%, 40% of the light is lost in 10 passes, which is a

considerable loss. So in reality, the best light path enhancement is a little over 10 times the

cell thickness [1], much smaller than the theoretical limit.

Photonic Crystals

Since photonic crystals are used extensively in this thesis to enhance light-trapping in

solar cells, we provide a brief summary of photonic crystal properties. Photonic crystals are

artificial materials with periodic dielectric constants in one, two or three dimensions, as shown

in figure 1.2 [5]. With careful designs, photonic crystals can exhibit photonic band gaps, so

that electromagnetic waves of certain frequency range cannot propagate along specific direction

inside.

The propagation of electromagnetic waves inside photonic crystal structures is governed by

the four macroscopic Maxwell’s equations:

∇ ·B = 0, ∇×E +
∂B

∂t
= 0

∇ ·D = ρ, ∇×H − ∂D

∂t
= J

(1.1)

where E and B are the macroscopic electric and magnetic files quantities, D and H are
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Figure 1.2 The schematics of photonic crystals with periodicity in one, two
and three dimensions.

corresponding derived fields. In general, there is no free charge or current, so

ρ = J = 0 (1.2)

In linear isotropic materials, the constitutive relation gives:

D(r, ω) = ε(r, ω)E(r, ω) B(r, ω) = µH(r, ω) (1.3)

In general, ε is a frequency dependent complex valued function, which is also a periodic

function of position, and µ is a constant. The complex dielectric function accounts for absorp-

tion. The dielectric function changes appreciably within the frequency range we interested in,

so we can not ignore the dispersion. With these assumptions, equation 1.1 becomes:

∇×E(r, t) = −µ∂H(r, t)
∂t

∇×H(r, t) = ε(r)
∂E(r, t)

∂t
(1.4)

In terms of time harmonics:

∇×E(r)− jωµH(r) = 0 ∇×H(r) + jωε(r)E(r) = 0 (1.5)

Combining the two equations in 1.5,

∇×
(

1
ε(r)
∇×H(r)

)
=
(ω
c

)2
H(r) (1.6)
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where c = 1/(εµ).

Equation 1.6 is essentially an eigenvalue problem with eigen operator Θ,

Θ ≡ ∇×
(

1
ε(r)
∇×

)
(1.7)

and eigenvalue of (ω/c)2. The solutions of eigenfunction typically have to been obtained with

computer simulations.

One of the most important implications of equation 1.6 is the scaling property. Suppose

we scale the photonic crystal structure by a factor of s, so that,

ε′(r) = ε(r/s) (1.8)

Then make a change of variable with r′ = sr and ∇′ = ∇/s , equation 1.6 becomes,

∇′ ×
(

1
ε′(r′)

∇′ ×H(r′/s)
)

=
( ω
cs

)2
H(r′/s) (1.9)

We get the same equation as 1.6 with eigenvector H ′(r) = H(r′/s) and eigenvalue ω′ = ω/s.

In other words, after scaling the structure by a factor of s, both the frequency and the field

profile are scaled by the same factor. So in designing photonic crystals, the wavelengths of

certain features can be controlled by adjusting the lattice constants of the photonic crystals.

Another design rule of thumb is that the higher the dielectric constant contrast, the wider the

bandgap. So we should use high dielectric contrast whenever possible.

One of the primary thrusts in the thesis is to replace the metallic back-reflector by a

diffracting surface such as a photonic crystal. Photonic crystals made of dielectric material

do not suffer from loss and will diffract light with the absorber layer, leading to enhancement

of photon path length. Only the carriers generated in the intrinsic layer can be collected and

contribute to the photo-current. The absorption occurred elsewhere will be lost. Since the light

is coming from the p-layer, the p-layer thickness can strongly affect the performance of the

solar cell. Analysis of Microelectronic and Photonic Structures (AMPS) simulations with 500

nm i-layer thickness show that both the short circuit current (Jsc) and the solar cell efficiency

(η) degrade with increasing p-layer thickness rapidly (Fig. 1.3a). At the same time, Jsc and

η do not change much with different n-layer thickness (Fig. 1.3b). For these reasons, it is
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Figure 1.3 The short circuit current (Jsc) and the solar cell efficiency (η)
for p-i-n solar cell with 500 nm intrinsic layer thickness. a)
AMPS simulation results with various p-layer thicknesses. b)
AMPS simulation results with various n-layer.

preferable to have the diffraction grating layer behind the n-layer instead of in front of the

p-layer.

DBR

The simplest photonic crystal is the one dimensional photonic crystal commonly known

as Distributed Bragg Reflector (DBR). A 10-layer DBR is schematically shown in figure 1.4a,

with definition of design parameters and polarizations. The solutions of equation 1.6 will give

rise to dispersion relationship (photonic band diagram) for the DBR (Fig. 1.4b). Clearly, a

photonic band gap is formed inside the DBR.

Generally, the width of the band gap varies with incident angles and polarizations. As

the incident angles increase from zero to oblique angles, the bandgap for TE modes increase,

whereas the bandgap for TM modes decrease. Nonetheless, there exists an omni-directional

bandgap that is independent of angles and polarizations. The analytical expressions for the
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Figure 1.4 a) The schematics of 10-layer DBR with definitions for design
parameters and polarizations. b) Photonic band diagram for
the DBR.

band edges are given by [6],

ωh =
2c

h2n2 + h1n1
arccos

(
−
∣∣∣∣n1 − n2

n1 + n2

∣∣∣∣) (1.10)

ωl =
2c

h2

√
n2

2 − n2
0 + h1

√
n2

1 − n2
0

arccos

(∣∣∣∣∣n2
1

√
n2

2 − n2
0 − n2

2

√
n2

1 − n2
0

n2
1

√
n2

2 − n2
0 + n2

2

√
n2

1 − n2
0

∣∣∣∣∣
)

(1.11)

DBR can be realized by quarter wavelength stacks of two dielectric materials. As long as

there is a difference in dielectric constants, there will be a bandgap. Of course, the higher the

contrast is, the wider the bandgap. Silicon (n1 ∼ 3.8) and SiO2 (n2 = 1.46) stacks present an

economical way of making the DBR. With h1 = 50 nm and h2 = 120 nm, an omni-directional

bandgap can be obtained from equations 1.10 and 1.11 to be from 565 to 778 nm.

In reality, silicon is absorptive and dispersive, so frequency dependent complex valued

dielectric constants have to be used in calculating the reflection and transmission through the

DBR. In addition to the scattering matrix simulation program, analytical solutions to the

Maxwell’s equations can be obtained and implemented in Matlab.

The incident, reflected and transmitted fields can be formulated as 2× 2 matrix for a thin



www.manaraa.com

8

film on a substrate [7], Fi

Fr

 =
1
2

 1 1/κi

1 −1/κi

× 1
2

 e−jδ + ejδ
(
e−jδ − ejδ

)
/κf(

e−jδ − ejδ
)
κf e−jδ + ejδ

×
 1

κs

Ft (1.12)

where δ = kf, normd and d is the thickness of the film. knorm is the normal component of

the wave vector and generally a complex quantity. For TE polarization, F represents E and

κ = knorm. For TM polarization, F represents H and κ = knorm/ε. In the right hand side

of equation 1.12, the first term corresponds to the input regain and the third term substrate.

The second term can be defined as the transmittance matrix. For M layers, the individual

transmittance matrix for each layer can be multiplied to obtain the total transmittance matrix, Fi

Fr

 =
1
2

 1 1/κi

1 −1/κi

 M∏
p=1

1
2

 e−jδp + ejδp
(
e−jδp − ejδp

)
/κf,p(

e−jδp − ejδp
)
κf,p e−jδp + ejδp



 1

κs

Ft(1.13)

These analytical solutions using equation 1.13 perfectly agree with the scattering matrix

simulations. For 6-layer DBR consisting of silicon and SiO2, the results are shown below for

TE polarization with incident angles of 0, 30, 60 and 89 degrees (Fig. 1.5).

To demonstrate the shifting of the band edges with increasing angles, the reflectance of

30-layer DBR has been calculated for both polarizations. In figure 1.6, the band edges are well

defined in the 30-layer DBR. We observe the blue shift of long wavelength edges (low frequency

edges), especially for TM modes. The omni-directional bandgap of the DBR is the overlap

of the bandgaps for all the incident angles with both polarizations. In this case of a 30-layer

DBR, the band edges are well predicted by equation 1.10 and 1.11, despite of the absorption

and dispersion of the material.

For wavelengths less than the lower band edge (high frequency), the DBR is quite absorptive

(Fig. 1.7). But this will not be a problem for solar cell back reflectors, as the higher energy

photons can be completely absorbed by the intrinsic layer of the a-Si:H solar cell before they

reach the DBR back reflector.

Another alternative DBR design involves using ITO and heavily doped poly-silicon. The

benefit of this design is that the back reflector can be made conductive, thus eliminate the

use of separate contact for the insulator DBR, which can be difficult to make. The dielectric
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Figure 1.5 The reflectance from the 6-layer DBR for TE polarization at
different angles, showing excellent agreement with scattering
matrix simulations.

constant of ITO is 1.95, so the contrast ratio of the two materials is smaller than the previous

design. As a result, the bandgap is smaller and more layers of the materials are needed to

provide high reflectivity. In the case of SiO2 and silicon DBR, 6 layers can provide reflectance

of ∼ 97% inside the bandgap (Fig. 1.7a). For ITO and silicon DBR, at least 10 layers are

required to provide same level of reflectance (Fig. 1.7b). Also the width of the bandgap is

much smaller.

2D Photonic Crystal Slab

We now survey basic properties of two-dimensional photonic crystals. Photonic crystal

slabs are important class of photonic crystal structures. Due to their ease of fabrication,
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Figure 1.6 The angular dependency of the reflectance from the 30-layer
DBR for both polarizations. The photonic bandgaps change
with incident angles.

photonic crystal slabs have attracted lots of attention. A photonic crystal slab consists of two

dimensional periodic variations in dielectric indices. Figure 1.8 shows photonic crystal slab

structures with square lattice and triangular lattice of cylinders in high dielectric index a-Si:H

slabs. The filling material of the cylinders can be either SiO2 or ITO.

The 2D photonic crystal slab can act as diffraction grating used in the solar cells. The

incident and reflected field components are depicted in figure 1.9. The wave vector and electric

field vector of the incident field can be defined as,

ki = kixx̂ + kiyŷ + kizŷ (1.14)

Ei = E0 exp(−jki · r) = E0 exp [−j (kxx+ kyy + kzz)] (1.15)
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Figure 1.7 a) The reflection, transmission and absorption of 6-layer
SiO2/Si DBR at normal incidence. b) The reflection, trans-
mission and absorption of 10-layer ITO/Si DBR at normal in-
cidence.

The reflected field vector can then be expressed in terms of Rayleigh expansions [8, 9],

Er =
∑
m,n

Rmn exp(−jkr,mn · r) (1.16)

The integer m and n define the order of the diffracted waves. Rmn is the magnitude of the (m,

n) diffracted wave.

From the phase matching condition and Floquet condition,

kr,mn = kxmx̂ + kynŷ + kzr,mnẑ (1.17)

Figure 1.8 a) 2D photonic crystal structure with square lattice of cylinders
in a dielectric slab. b) 2D photonic crystal structure with square
lattice of cylinders in a dielectric slab.
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Figure 1.9 The schematics of the incident wave and reflected wave from
the 2D square lattice photonic crystal slab.

where,

kxm = kx +mGx

kyn = ky + nGy

k2
zr,mn = k2

i − k2
xm − k2

yn

(1.18)

Gx and Gy are unit vectors of the reciprocal lattice vector G. They are also referred to as

grating vectors in diffraction gratings. In square lattice showed in figure 1.9,

Gx = Gy = 2π/a (1.19)

where a is the lattice constant. If k2
zr,mn > 0 , the reflected wave is a propagating wave;

otherwise, it is a evanescence wave which decays exponential away from the interface.

Scattering Matrix Method

The principal simulation method employed in the thesis is the Scattering Matrix Method.

We briefly survey the method since extensive discussions appear in published papers. The well-

known Transfer Matrix Method (TMM) can be used to calculate the transmission and reflection
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spectra from layer by layer structures [10, 11]. In each layer, the material is homogeneous along

the z direction (Fig 1.10). Ωs are column vectors consisted of Fourier components of electric

fields. A transfer matrix can be defined relating the incident, transmitted and reflected fields

for each layer,  Ω+
i

Ω−i

 = Ti

 Ω+
i−1

Ω−i−1

 (1.20)

Then the total transfer matrix can be obtained by multiplication of transfer matrices for all

the layers.

Figure 1.10 Definition of S matrix for photonic crystal slab with n layers.
b) Definition of S matrix for an individual layer.

But for large layer thickness, TMM has been proved to be numerically unstable. The

stability issue can be solved by redefine the transfer matrix as scattering matrix (S matrix), Ω+
i

Ω−i−1

 = si

 Ω+
i−1

Ω−i

 (1.21)

Then a recursion algorithm is used to connect each individual S matrix to the total S matrix

[12].

The S matrix for each layer can be calculated from the continuity of E and H fields on

each interface. In each layer, the dielectric index ε is a function of x and y only. The Fourier
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transforms of ε and ε−1 can be expresses as,

ε(r) =
∑
ij

εij exp(−jGij · r) (1.22)

ε−1(r) =
∑
ij

ε−1
ij exp(−jGij · r) (1.23)

where r = xx̂+yŷ . The Maxwell’s equations 1.5 can be decomposed into 6 equations in three

dimensional Cartesian coordinate system. The z dependence of the in-plane electric fields can

be obtained,

∂

∂z
Ex =

1
jk0

∂

∂x

[
1

ε(x, y)

(
∂

∂x
Hy −

∂

∂y
Hx

)]
− jk0Hy (1.24)

∂

∂z
Ey =

1
jk0

∂

∂y

[
1

ε(x, y)

(
∂

∂y
Hx −

∂

∂x
Hy

)]
+ jk0Hx (1.25)

Each field is rewritten in the forms of equation 1.16. Substituting 1.23 into 1.24 and 1.25,

∂

∂z
Eij,x =

jkij,x
k0

∑
mn

ε−1ij,mn(kmn,xHmn,y − kmn,yHmn,x)− jk0Hij,y (1.26)

∂

∂z
Eij,y =

jkij,y
k0

∑
mn

ε−1ij,mn(kmn,xHmn,y − kmn,yHmn,x) + jk0Hij,x (1.27)

Two more equations for the magnetic field can be derived following the same procedure. With

the column vectors E = (· · · , Eij,x, Eij, y, · · · )T and H = (· · · , Hij,x, Hij, y, · · · )T , equations

1.26 and 1.27 can be written in matrix form,

∂

∂z
E = T1H (1.28)

And similarly,

∂

∂z
H = T2E (1.29)

Finally,

∂2

∂z2
E = T1T2E = PE (1.30)

The eigenvalue equation 1.30 is then solved for each layer with boundary conditions that the

fields are continuous at the interfaces. The solutions will lead to S matrix for each layer.
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Standard recursion relations are then used to construct the scattering matrix of the entire

structure S from the scattering matrices (Si) of the individual layers. From the scattering

matrix S the reflection, transmission and absorption of any layered structure can be simulated

when waves are incident from the left or from the right of the structure.

There are several advantages of the scattering matrix method over traditional methods such

as finite difference time domain (FDTD). In the scattering matrix method Maxwell’s equations

are solved in Fourier space for each frequency at a time i.e. in the frequency domain. There

is no need to use a real space grid which is a major drawback in dealing with thick substrates

or thick layers. The use of real space grids in FDTD demand enormous use of memory. The

Fourier space approach has the advantage that any number of layers of differing width can be

easily described since a real-space grid is not needed.

Since the scattering matrix is being employed in frequency domain, the computational

algorithm can be easily parallelized with each frequency of group of frequencies sent to a

different processor. Such a parallelization is difficult to achieve with real-space methods. The

results for each frequency are then concatenated to obtain the entire frequency response of the

system.

The convergence of scattering matrix method is fast for dielectric materials compared with

metallic materials, since dielectrics do not have dispersion as strong as metals. A plane wave

number of 261 is sufficient for modeling our solar cell structures. On the cluster mountain

(mountain.ece.iastate.edu), it takes ∼ 10 minutes to calculate the transmission and reflection

for each frequency on one processor. On the cluster cyblue (cyblue.ece.iastate.edu), it takes

∼ 30 minutes to complete the calculation. Thanks to large number of processors available on

cyblue, up to 512 processors can be allocated at once and the total absorption can be obtained

for the whole solar spectrum in a single run.

Thesis Organization

Chapter 2 and 3 are two papers published Material Research Society Symposium Proceed-

ing and Journal of Applied Physics. They describe the enhanced light-trapping in a-Si:H solar
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cells with 2D photonic crystal grating and DBR. Chapter 2 uses SiO2 and silicon to form the

grating and the DBR, while chapter 3 uses ITO and silicon.

In chapter 4, periodic array of gold nano-cylinders are formed on top the ITO substrate.

Incoming light can be diffracted from the normal direction with little loss. The concept can

be applied to solar cell structure and light-trapping enhancement is expected. This chapter

serves as suggestions for future work.
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Abstract

A major route to improving solar cell efficiencies is by improving light trapping in solar cell

absorber layers. Traditional light trapping schemes involve a textured metallic back reflector

that also introduces losses at optical wavelengths. Here we develop alternative light trapping

schemes for a-Si:H thin film solar cells, that do not use metallic components, thereby avoiding

losses. We utilize low loss one dimensional photonic crystals as distributed Bragg reflectors

(DBR) at the backside of the solar cells. The DBR is constructed with alternating layers of

crystalline silicon and SiO2. Between the DBR and the absorber layer, there is a layer of

two dimensional photonic crystal composed of amorphous silicon and SiO2. The 2D photonic

crystal layer will diffract light at oblique angles, so that total internal reflections are formed

inside the absorber layer. We have achieved very high optical absorption throughout optical

wavelengths (400 – 700 nm) and enhanced light-trapping at near-infrared (IR) wavelengths

(700 – 800 nm) for amorphous silicon solar cell. The optical modeling is performed with a
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rigorous three dimensional scattering matrix approach where Maxwell’s equations are solved

in Fourier space.

Introduction

Enhancing light-trapping is a major route to improving solar cell efficiency. Typically,

enhancing light-trapping in thin film solar cells is achieved by a back reflector that confines

light within the absorber layer. The back reflector is usually textured to scatter light at the

interface through large reflected angles. This increases the optical path length within the cell

i-layer, and it is necessary to scatter as much light as possible in oblique directions.

A typical metallic back reflector consisting of Ag coated with ZnO [1], suffers from intrin-

sic losses. The granularity of the interface [1] produces small metallic nanoparticles that can

exhibit surface plasmon modes. Surface plasmons of free Ag nano-particles are at ultraviolet

wavelengths. Ag coated with a dielectric (with refractive index n), has surface plasmon wave-

lengths lowered by ∼ 1/n, and can reside at optical wavelengths. Such surface plasmon modes

induce intrinsic loss with every light passage in the cell, which was measured by Springer et

al [2] to be 3% to 8% at 650 nm for different surface roughness of the silver back reflector.

The losses accumulate and become severe at infrared wavelengths where the absorption length

of photons in a-Si:H is long and multiple optical passes are required. Even a small loss of

4% with each reflection in a metallic back-plane incurs a severe loss of 1 − (0.96)50 or 87%

with 50 passes. These considerations have motivated us to examine the novel use of loss-less

nonmetallic photonic crystal structures for light-trapping.

Background

Photonic crystals (PCs) have been a major scientific revolution in manipulating and guiding

light in novel ways [3]. It is likely that photonic crystals can be utilized to harvest solar photons

in ways not possible conventionally. Heine and Dorf [4] utilized gratings to enhance absorption

in solar cells. Two groups at MIT [5,6] have recently developed a novel scheme for enhancing

light-trapping in c-Si solar cells, where the metallic back-reflector was replaced by a DBR with
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a reflective band at near-IR wavelengths (λ > 0.8 µm) where the absorption lengths of photons

are large. A diffractive grid on the DBR reflected light at oblique angles to increase the path

lengths of near IR photons.

In the limit of a loss-less random metallic scattering surface, geometrical optics predicts

an increase of optical path length by at most 4n2 [7] corresponding to ∼ 45 for Si (n is the

refractive index of the absorber). However, in conventional light-trapping schemes considerably

less path length enhancement (∼ 10) can be achieved. The advantage of photonic crystals is

to introduce diffraction, where the photon momentum (k) can be scattered away from the

specular direction with (k‖ = k
‖
i + G), where G is a reciprocal lattice vector. As emphasized

in recent work by MIT groups [5, 6], diffractive wave optics can enhance the path length of

light far in excess of the classical limit of 4n2 from geometrical optics.

Theoretical Model

We simulate solar cell structures with a rigorous scattering matrix method [8], where

Maxwell’s equations are solved in Fourier space and the electric/magnetic fields are expanded

in Bloch waves. The structure is divided into slices (along z). In each slice the dielectric

function ε(r)is a periodic function of x and y. Hence the dielectric function and its inverse are

Fourier expansions with coefficients ε(G) and ε−1(G).

In the scattering matrix method [8, 9], a transfer matrix M in each layer is calculated and

diagonalized to obtain the eigenmodes within each layer. Both polarizations are included. The

continuity of the parallel components of E and H at each interface leads to the scattering

matrices si of each layer, from which we obtain the scattering matrix S for the entire structure.

Using the S-matrix, we simulate the reflection, transmission and absorption [9] for incident

light. The advantage of this approach is that any number of layers of differing widths can

be easily simulated since a real-space grid is not necessary. Since the solutions of Maxwell’s

equations are independent for each frequency, the computational algorithm has been paral-

lelized where each frequency is simulated on a separate processor. The individual layers utilize

realistic frequency dependent dielectric functions that include absorption and dispersion.
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We focus on optical engineering of single junction cells, which ideally have a-Si:H absorbers

with band gaps ∼ 1.6 eV. We use the frequency dependent dielectric functions (ε1, ε2) (Fig.

2) determined from spectroscopic ellipsometry for a-Si:H and analytically continued to the

infrared by Ferlauto et al [10]. The absorption length ς(λ) of photons (ς = 1/α = 1/4πn2) ¡

1 µm below wavelengths of 0.65 µm (Fig. 2) and these photons can be absorbed effectively

in thin (∼ 0.5 µm) a-Si:H layer. However, when λ > 0.65 µm, the absorption length exceeds

1 µm and in the near-IR below the band gap wavelength (0.7 – 0.775 µm), ς exceeds 5 µm.

It is very difficult to harvest these near-IR photons. It is necessary to have lossless multiple

reflections within the absorber, for effective light-trapping.

Figure 2.1 Energy dependent dielectric
functions for a-Si:H with Eg =
1.6 eV, determined from spectro-
scopic ellipsometry by Ferlauto
et al (Ref [10]).

Figure 2.2 Absorption length of photons as a
function of wavelength for a-Si:H
with Eg = 1.6 eV. The wave-
length corresponding to the band
edge Eg is indicated by the arrow.

Light-trapping Schemes

The solar cell that we simulate (Fig2.3) consists of the following layers:

i) The top indium tin oxide (ITO) layer (n = 1.95), is an antireflective coating and top

contact with a thickness (d0) that is determined using scattering matrix simulation.
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ii) The a-Si:H absorber layer has a thickness of 0.5 µm, typical for single-junction thin film

solar cells. The bandgap is 1.6 eV (λg = 0.775 µm).

Figure 2.3 (a) Schematic solar cell configuration with antireflective coat-
ing, two-dimensional photonic crystal and distributed Bragg re-
flector (DBR) (b) Top view of 2D photonic crystal grating layer
with amorphous silicon cylinders in SiO2 background

iii) The two dimensional (2D) photonic crystal layer is a square lattice (lattice constant a)

of dielectric cylinders (radius R) within another dielectric background material. The dielectric

contrast of the two materials needs to be high enough for sufficient diffraction. We choose

a-Si:H (n ≈ 4) and SiO2 (n = 1.46) as grating materials. There are two alternative designs,

with a-Si:H cylinders in an SiO2 background (Fig. 2.3b) or SiO2 cylinders in an a-Si:H matrix.

The PC layer thickness (grating depth d3) and lattice constant a are varied to maximize the

absorption.
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Figure 2.4 Reflection and transmission

through 6-layer c-Si/SiO2 DBR

for normal incidence

iv) The DBR of 6 alternating c-Si and

SiO2 layers represents an economical method

for making an omni-directional reflector, that

is much simpler than fabrication of 3D PCs.

c-Si is chosen because it has a high index con-

trast (n ∼ 3.8) with SiO2 (n = 1.46) and low

absorption. Although a-Si:H has a high refrac-

tive index, it also has considerable absorption,

which is not desirable for the DBR. With c-

Si thickness d1 = 50 nm and SiO2 thickness

d5 = 120 nm, an omni-directional bandgap

from 565 to 788 nm is obtained [11]. The inci-

dent light in the absorber layer in confined in

a small light cone (α < 16◦). The closer the

incident light is to the normal, the wider the bandgap (Fig. 2.4).

Simulation and Results

We understand the functions of different components of the solar cell separately. As shown

above, the DBR provides a wide reflective stop band. To understand the diffraction of the 2D

PC within the absorber layer, we simulate just the grating consisting of SiO2 cylinders in an

a-Si background in air on a thick (∼ 300 µm) c-Si substrate. We obtain reflectance for different

R/a with fixed grating depth (d3 = 40nm) and lattice constant (a = 0.7 µm). By comparing

the difference between specular and non-specular reflection, we can examine the effectiveness

of the diffraction grating (Fig. 2.5). Diffraction occurs when λ < a. The maximum diffraction

occur between R/a = 0.35 and 0.4, when ∼ 30% of the light is diffracted. The value of R/a =

0.38 also maximizes the strength of the Fourier component of grating.

Scattering matrix simulations are performed for the solar cell configuration of Fig. 2.3a and

the absorption is maximized by varying one parameter at a time. An optimal structure consists
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Figure 2.5 Comparison of specular (S) and non-specular (NS) reflec-
tion from the 2D photonic crystal for different R/a with
a = 0.70 µm, d3 = 0.04 µm and d4 = 300 µm

of a = 600 nm,R/a = 0.38, d1 = 50 nm, d2 = 500 nm, d3 = 50 nm and d5 = 120 nm. The

thickness of ITO d0 is expected to range from 500 nm/4nITO = 64 nm to 775 nm/4nITO =

100 nm. By simulations, we find that d0 = 65nm provides the least reflection from the top

surface.

Figure 2.6 Non-specular (total) reflection/transmission/absorption in
the absorber layers for the two competing designs with
d0 = 65 nm, d1 = 50 nm, d2 = 500 nm and d2 = 120 nm (a)
a-Si layer with SiO2 cylinders (b) SiO2 layer with a-Si cylinders

For fixed d0 = 65 nm, we optimize the lattice constant. We find that the lattice constants

in the range from 600 to 700 nm give the highest absorption in the absorber layer, which

correspond to the third order of diffraction. With a = 680 nm, we run simulations with
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different d3 for both grating configurations. We find that d3 = 80 nm for SiO2 layer with

a-Si cylinders and d3 = 50 nm for a-Si layer with SiO2 cylinders give the best diffraction and

highest light-trapping within the absorber layers.

Figure 2.7 Comparison of absorption of a

bare a-Si:H film, a-Si:H film with

AR coating only, a-Si:H film with

AR coating and DBR and the op-

timized solar cell with photonic

crystal grating.

The optimized solar cell with SiO2 cylin-

ders inside the a-Si layer (Fig. 2.6a) and the

complementary structure of a-Si cylinders in

the SiO2 matrix (Fig. 2.6b) both show very

high absorption (A > 0.8) through most of

the optical wavelengths (0.4 – 0.7 µm) (Fig.

2.6) accompanied by small reflection. There is

appreciable photon absorption between 0.7 –

0.775 µm, a region where the absorption length

of photons exceeds 5 µm. The enhance ab-

sorption improves the near-IR solar response.

Wavelengths larger than 0.775 µm are largely

reflected from the cell in both configurations n

these are above the bandgap and do not con-

tribute to photocurrent.

It is instructive to compare the light-

trapping in our optimized solar cell with that

of a bare a-Si:H film, an a-Si:H film with anti-

reflective coating and an a-Si:H film with DBR and antireflective coating (Fig. 2.7). Below

λ = 0.65 µm, the absorption length less than 1 µm. With an anti-reflective coating and

DBR, most of incident light can be absorbed in the absorber layer within two optical paths.

Above λ = 0.65 µm, the PC enhances the light-trapping efficiency up to a factor of 2 without

introducing losses.

The difference in grating depths of the two competing designs can be understood by different

effective dielectric constants of the grating layers. With R/a = 0.38 , the filling ratio f =
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πR2/a2 = 0.45. Maxwell-Garnett approximation gives neff ∼ 3 for a-Si grating layer and

neff ∼ 2.3 for SiO2 grating layer. Grating depth can be estimated by quarter wavelength

inside the grating layer to reduce the specular reflection.

Conclusions

We develop a novel light trapping scheme in a-Si:H solar cells with dielectric photonic

crystals. By combining a 2D photonic crystal diffraction grating and DBR, we can efficiently

harvest optical photons, without losses associated with metallic reflectors. We enhance the

absorption at longer wavelength (λ > 0.65 µm – where absorption lengths are long) up to

the bandgap by a factor of ∼ 2. Also, the absorption peak of the optimized a-Si:H solar cell

matches the peak of solar radiation spectrum. For future work, we wish to place a 2D photonic

crystal diffraction grating at the interface between ITO and the absorber.
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Abstract

We utilize photonic crystals to simulate enhanced light-trapping in a-Si:H thin film solar

cells. A one dimensional photonic crystal or distributed Bragg reflector with alternating di-

electric layers acts as low loss backreflector. A two dimensional photonic crystal between the

absorber layer and the Bragg reflector diffracts light at oblique angles within the absorber. The

photonic crystal geometry is optimized to obtain maximum absorption. The photonic crystal

provides lossless diffraction of photons, increasing the photon path length within the absorber

layer. The simulation predicts significantly enhanced photon harvesting between 600 and 775

nm below the band edge, and an absorption increase by more than a factor of 10 near the

band edge. The optical path length ratio can exceed the classical limit predicted for randomly

roughened scattering surfaces at most wavelengths near the band edge. The optical modeling

is performed with a rigorous scattering matrix approach where Maxwell’s equations are solved

in Fourier space.
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Introduction

Enhancing light-trapping is a major route to improving thin film solar cell efficiency. A

major limitation to solar cell efficiency is the long absorption length of long wavelength photons

and the small absorber layer thickness. Enhancing light-trapping in thin film solar cells is

typically achieved by a textured metal back reflector that scatters light within the absorber

layer and increases the optical path length of solar photons. A typical metallic back reflector

of silver coated with ZnO (Ref. 1) suffers from intrinsic losses from surface plasmon modes

generated at the granular metal-dielectric interface. Springer et al measured such losses to be

3% - 8% with each reflection at 650 nm, for different textured silver back reflectors.2 Such losses

accumulate rapidly and become even more severe at longer wavelengths, where the absorption

lengths of photons in the absorber are increased and multiple optical passes are required.

Our analysis can be applied to any thin film solar cell, and we focus on a-Si:H as a convenient

prototype. The absorption length (Ld) of a-Si:H with bandgap (Eg) of 1.6 eV is shown in Fig.

3.1, using measured dielectric functions.3 For wavelengths λ > 650 nm, the absorption length

exceeds 1 µm and approaches 100 µm near the band edge (λg = 775 nm, Fig. 3.1). It

is exceedingly difficult to harvest these photons since the absorber thickness of p-i-n single

junction solar cell is limited to a few hundred nm for efficient carrier collection. Improved

harvesting of long wavelength photons is critical for enhancing the average absorptions and

cell efficiencies.

Photonic crystals (PCs) have created a major scientific revolution in manipulating and

guiding light in novel ways.4 The advantage of photonic crystals is to introduce diffraction,

where the photon momentum (k) can be scattered away from the specular direction with

k‖ = k
‖
i + G, where G is a reciprocal lattice vector and ki is the incident wave-vector. Two

groups have recently developed a novel scheme for enhancing light-trapping in crystalline silicon

(c-Si) solar cells with a photonic crystal back reflector combined with a reflection grating.5,6

This has motivated us to enhance light trapping in much thinner a-Si:H solar cells, using

two-dimensional (2D) PCs as a diffraction grating.
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Figure 3.1 Absorption length of photons as a function of wavelength for
a-Si:H with bandgap Eg = 1.6 eV. The bandgap wavelength is
indicated by the arrow.

Light-trapping Schemes

We consider photonic crystal enhanced solar cells in which the metallic back-reflector is

replaced by a distributed Bragg reflector (DBR) consisting of a one-dimensional dielectric su-

perlattice [or one-dimensional (1D) photonic crystal] with sufficient dielectric contrast between

the two components. In the photonic crystal enhanced solar configuration (Fig. 3.2), we have

(1) a traditional antireflective coating as a top contact (thickness d0), (2) an absorber layer

(thickness d2), (3) a two-dimensional photonic crystal (thickness d3) and (4) DBR. This con-

figuration has the advantage that the diffraction of light occurs at the back of the cell where

light absorption is very low. The 2D PC diffracts light within the absorber layer and the

DBR specularly reflects light with little loss. Within the absorber layer, multiple total internal

reflections occur and light is tightly trapped inside.

Various choices of DBR are possible. The DBR can be fabricated using n+ c-Si and ITO

with thickness d1 = 50 nm and d4 = 90 nm. Although ITO offers low dielectric contrast

(nITO ∼ 1.95), such a DBR is conductive and can be used directly as back contact — a

significant advantage for solar cells. In contrast, another design utilizes 10 alternating layers
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Figure 3.2 (a) Schematic solar cell configuration with top ITO, 2D PC,
bottom ITO and DBR. (b) Top view of 2D PC grating layer
with a-Si:H cylinders in an ITO background.

of c-Si and SiO2 representing an economical method for making an insulating omni-directional

reflector.7 With a c-Si thickness d1 = 50 nm and a SiO2 (nSiO2 ∼ 1.46) thickness d4 = 120 nm,

an omni-directional bandgap from 565 to 788 nm is obtained.8 Within this range, nearly

∼ 100% of the incident photons are reflected. A thin ITO layer on top of the DBR, followed by

interdigitated contacts to collect electrons on the side is necessary, which results in a complex

device structure.

The PC is a square lattice (period of a) of a-Si:H cylinders (radius of R) enclosed by

the oxide background. The dielectric contrast of the two materials (∼ 4) is large enough for

sufficient diffraction of light reflected from the PC. The absorber thickness (d2) is 500 nm,

typical for single-junction or tandem cells. In order to account for p-layer losses in a p-i-n solar

cell, we choose a p-layer thickness of dp ∼ 20 nm that strongly absorbs at short wavelengths.

The absorption A in the i-layer is A(λ) = At(λ) exp(−dp/Ld(λ)), where At(λ) is the total
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absorption.

Simulation and Results

We simulate solar cell structures with a rigorous scattering matrix method.9,10 Maxwell’s

equations are solved for both polarizations in Fourier space and the electric/magnetic fields are

expanded in Bloch waves. We use frequency dependent dielectric functions determined from

spectroscopic ellipsometry that are analytically continued to the infrared by Ferlauto et al

for a-Si:H.3 Since Maxwell’s equations for each frequency are independent, the computational

algorithm has been parallelized where each frequency is simulated on a separate processor.

The calculated total absorption in the i-layer is weighted by the AM 1.5 solar spectrum11 and

integrated from 280 nm (λmin) to 775 nm (λg) to obtain the average absorption < A >

< A >=
∫ λg

λmin

A(λ)
dI
dλ

dλ (3.1)

where dI/dλ is the incident solar radiation intensity per unit wavelength.

We systematically optimize each layer in the solar cell to achieve the highest light-trapping.

It is convenient to start with a cell with the antireflective coating fixed to a value very close

to a quarter-wavelength near the middle of the optical range (d0 ∼ 65 nm at 500 nm).

The cylinder radius in the photonic crystal assumes a value that maximizes the diffraction

from the photonic crystal. Maximum diffraction is expected when the Fourier components of

the dielectric function of the 2D PC is a maximum. The Fourier component of an array of

cylinders is known to be,9

ε(G) = f(εSi − εITO)
2J1(GR)
GR

(3.2)

where f = πR2/a2 is the filling ratio. With R/a = 0.38, we maximize the strength (Fig.

3.3) of the first Fourier component (G1 = 2π/a). This radius is a useful guide for the initial

simulations and will be later optimized carefully.

The thickness of the photonic crystal d3 is such that the specular reflected beam is min-

imized at the interface between a-Si:H and 2D photonic crystal grating. Inside the bandgap

of DBR, the real part of effective impedance of the DBR (η23) is almost zero, so that the
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Figure 3.3 (Fourier component of the dielectric function and filling ratio,
for the first reciprocal lattice vector G1 = 2π/a.

reflection coefficient (Γ23) at the surface of DBR has a magnitude of unity. Assuming normal

incidence, the total reflection coefficient from the ITO portion of the photonic crystal grating

is:

ΓITO =
Γ12 + Γ23e−j2βITOd3

1 + Γ12Γ23e−j2βITOd3
(3.3)

where Γ12 = (ηITO − ηa−Si)/(ηITO + ηa−Si) and βITO is the phase constant inside the ITO.

The total reflection coefficient from the a-Si:H portion of the photonic crystal grating is:

Γa−Si = Γ23e−j2βa−Sid3 (3.4)

where βa−Si is the phase constant inside a-Si:H.

The sum of the reflection coefficients from the ITO and a-Si:H portions should vanish for the

choice of d3. With this crude approximation, a 90 nm grating layer shows the minimum overall

reflection. We can see later that the optimized value of 100 nm validates this approximation.

Some initial simulations with these approximate parameters suggested that lattice constant

of ∼ 0.7 µm gave the best diffraction. We then optimized the PC thickness d3 and the ITO

layer thickness d6 adjacent to the PC keeping other parameters constant. We found the best

absorption for d6 = 0 and d3 = 100 nm (Fig. 3.4a) through scattering matrix simulations.

However adding a thin base ITO layer for improving contacts will not reduce the absorption
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very much (Fig. 3.4b). We therefore used the optimized value of d3 and d6 to optimize both

the lattice spacing ’a’ (Fig. 3.5) and the filling ratio of the photonic crystal or the cylinder

radius R (Fig. 3.6).

The critical dependence of the enhanced absorption with the lattice spacing ’a’ of the

photonic crystal was obtained by calculating the absorption in the intrinsic layer (Fig. 3.5)

with various choices of a, and holding other variables fixed. The average absorption (Fig. 3.5)

is optimized for a lattice spacing a ∼ 0.7 µm. However substantially larger lattice spacings near

1−−1.5 µm offer improvement over a flat metal reflector and may be much more convenient

for fabrication. For diffraction from the PC, it is necessary for the lattice spacing of the

photonic crystal be larger than the wavelength of light in the absorber layer (a > λ/n(λ)).

This condition is satisfied for a > 0.25 µm, where the enhanced absorption is found (Fig. 3.5).

The diffractive light-trapping mechanism can be explained by a simple analytical model.

With the a-Si:H thickness d2, all resonances should pick up a roundtrip phase change 2mπ ,

so that k⊥ = πm/d2. The wavelength of diffracted resonant mode is given by:

λ = 2πn(λ)/
√
G2
x +G2

y + (mπ/d2)2 (3.5)

where m is an integer, n is the refractive index of a-Si:H and Gx, Gy are the components of

reciprocal lattice vectors (Gx = i(2π/a), Gy = j(2π/a)). The diffraction resonances occur for

integer values of i, j and m and exhibit peaks in the absorption for wavelengths near the band-

edge for values of a larger than ∼ 0.25 µm. The peaks overlap and form the overall absorption

enhancement. It is necessary to have several diffraction resonances within the wavelength

window (0.6 − −0.775 µm) below the band edge, where the absorption length of photons is

longer than the absorber layer thickness. Simulations indicate that the diffraction resonances

are most effective for a ∼ 0.7 µm (Fig. 3.5).

We varied the cylinder radius R/a, holding other parameters constant (Fig. 3.6) and found

that the optimum value of cylinder radius occurs near R/a = 0.39 − −0.4, when the filling

ratio is ∼ 50%. This value is as expected from the maximum magnitude of Fourier component

of the dielectric function (Fig. 3.3) so that diffraction is most effective for near equal volume

fraction of the two dielectric materials.
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Figure 3.4 a) The variation in average absorption with thickness of the
photonic crystal (d3), holding other parameters constant near
the optimum values. b) The average absorption as a function
of d6, for several values of the grating depth d3.
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Figure 3.5 The variation in average absorption with lattice spacing ’a’ of
the photonic crystal, holding other parameters constant near
the optimum values.

Figure 3.6 The variation in average absorption with cylinder radius of the
photonic crystal, holding other parameters constant near the
optimum values.
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Figure 3.7 (a) The absorption of the optimized photonic crystal enhanced
solar cell structure as a function of the wavelength, compared to
the reference cell with antireflective coating and DBR only. (b)
The absorption enhancement ratio of the optimized solar cell
over the reference cell without the photonic crystal. (c) The
ratio of the optical path length to the absorber layer thickness,
for the optimized PC enhanced solar cell (solid) compared to
the reference cell (dotted). The horizontal dashed line shows the
theoretical limit of path length enhancement from a randomly
roughened back reflector (∼ 50).
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The optimized solar cell with the photonic crystal can achieve absorption considerably

larger than that without the photonic crystal (Fig. 3.7). Most of the enhanced absorption

(Fig. 3.7a, b) occurs near the band edge (600 – 775 nm), where photons have long absorption

lengths. The photonic crystal generates modes of diffraction at these wavelengths, effectively

increasing the path length or dwell time. We use the observed absorption, and wavelength-

dependent absorption length of a-Si:H, to extract an optical path length of photons in the

absorber layer. The ratio of the optical path length to the thickness of the absorber (Fig.

3.7c), is a convenient figure of merit. The theoretical limit of light path length enhancement

from randomly roughened back reflector is about 4n2, where n is the refractive index of the

absorber layer.12 This predicts an enhancement of absorption of ∼ 50 for silicon thin films.

However this assumes that the textured back reflector is loss-less, which is not the case in

practice. Springer et al measured losses of 3 – 8% at the textured back reflector with each

reflection from excitation of surface plasmon modes at the interface.2 This reduces the observed

optical path length enhancement to much less than 50. The best enhancement of ∼ 10 has

been estimated in solar cells with roughened metallic interfaces.13 Compared with the common

textured back reflector, the 2D photonic crystal grating can achieve much greater enhancement

around several hundred at resonance wavelengths (Fig. 3.7c), and exceeding the theoretical

limit for the random diffusive optical scattering (Fig 3.7c) for most wavelengths near the band

edge. The purely dielectric PC and DBR, should not exhibit losses associated with metallic

components. Below 600 nm, the photonic crystal has little effect, since photons have absorption

lengths smaller than the film thickness and are effectively absorbed within the a-Si:H absorber

layer, without reaching the back surface. The fall-off in the absorption at short wavelengths is

due to the high absorption of the p-layer.

Discussion and Conclusions

We have also examined an alternative photonic crystal configuration where the PC resides

between the antireflective coating and the absorber. The disadvantage of this front grating

design is that the photonic crystal contains p-type a-Si:H. Such a thick p-layer is highly ab-
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sorptive and the carriers created within this p-layer can not be collected by the solar cell. A

thick p-layer degrades the short circuit current, as we have confirmed with Analysis of Micro-

electronic and Photonic Structures (AMPS) device simulations. The back grating studied in

this paper may utilize n-type a-Si:H within the PC. The absorption within the n-layer is low.

Thicker n-layers have little effect on the short circuit current.

Plasmon-assisted schemes, where metal nanoparticles have surface plasmon resonances that

concentrate light field, can also provide promising absorption improvements in a-Si:H solar

cells.14,15 They may be an alternative to the photonic crystal concept presented here.

The optimized photonic crystal has a lattice constant of 0.7 µm, and the performance

decreases for larger spacing (Fig. 3.5). Fabrication of such a small pitch ITO photonic crystal

on large areas is certainly challenging. A viable approach is using holographic lithography,

where interference between two or more coherent light beams can produce a periodic intensity

pattern.16,17 It has been shown that by varying the angle of the beams and exposure times,

a variety of high symmetry lattice structures with periods less than 1 µm were produced on

semiconductor substrates covered with photoresist.18 Such holographically generated patterns

with periods less than 1 µm have already been utilized to enhance the light extraction of light-

emitting diodes.18 Once a small area sample is synthesized, it can be repeated over a much

larger area to obtain patterned areas suitable for large area solar cells. Finally, the periodic

patterns are transferred to ITO using reactive ion etching. Sub-micron diffractive gratings19

are clearly an aspect for future experimental work.

In conclusion, we develop a novel light trapping scheme in a-Si:H solar cells with dielectric

photonic crystals. By combining a 2D PC diffraction grating and DBR, we can efficiently har-

vest solar photons, without losses associated with textured metallic reflectors. The photonic

crystal provides loss-less diffraction of photons, increasing the photon path length within the

absorber layer. For near band-edge photons with wavelength of 600 – 775 nm, the optimized

solar cells demonstrate more than hundred times increase in path length at diffraction reso-

nances and exceed the classical light path enhancement limit predicted for randomly roughened

interfaces. Such photonic crystal schemes can be extended to multi-junction cells. The en-
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hancement is more profound for thinner cells. Since holes can be collected more efficiently for

thinner cells, we can make even thinner and more efficient a-Si:H solar cells with the 2D PC

and DBR.
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CHAPTER 4 GENERAL CONCLUSIONS

General Discussion

In this work, we develop a novel light-trapping scheme in a-Si:H solar cells with the combi-

nation of 2D photonic crystals and DBR. The dielectric pairs forming the photonics crystals and

DBR can be Si/SiO2 and Si/ITO. The Si/SiO2 combination can provide stronger diffraction

and high reflectivity DBR with less pairs, while the Si/ITO combination have the advantage

that the DBR can be made conductive and used as back contact. In both the combinations, the

photonic crystal can increase the photon path length within the absorber layer. Simulations

show that the path length enhancement can reach several hundred times at diffraction reso-

nance and far exceed the classical light path length enhancement limit predicted for randomly

textured surfaces. Since the enhancement is more profound for thinner cells, we can make

thinner and more efficient a-Si:H solar cells.

We have also examined an alternative front grating, where the PC resides between the

anti-reflective coating and the absorber. The simulations show that same level of path length

enhancement can be obtained in this structure, but there are some precautions in making

those devices. Since a p-layer is highly absorptive and the carriers generated within can not

be collected by the contacts, a thick p-layer should be avoided. For this reason, the holes in

the top ITO should not be filled entirely with p-type silicon. Instead, a thin layer of p-type

silicon (∼ 20 nm) should be deposited conformally.

The optimized photonic crystal has a lattice constant of ∼ 0.7 µm. With R/a ratio ∼ 0.4,

the smallest feature size is on the order of 140 nm. It is certainly a challenge to fabricate

photonic crystal with such a small pitch size on larger areas. A popular alternative to the

standard photolithography is electron-beam lithography (E-beam lithography). Various pho-
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tonic crystals can be created with extremely high resolution. Due to its complexity, the cost

the E-beam lithography is high and not suitable for mass production of solar cells.

Thanks to the periodic nature of photonic crystals, a viable solution is to use interference

lithography (holographic lithography), where interference between two or more coherent light

beams can produce a periodic intensity pattern [1, 2]. By splitting the initial laser beam,

several coherent beams can be generated and overlap on the photoresist at angles. It has

been shown that by varying the angle of the beams and exposure times, a variety of high

symmetry lattice structures with periods less than 100 nm can be produced on semiconductor

substrate covered with photoresist [3]. Once a small area sample is synthesized, it can be

repeated over a much larger area to obtain patterned areas suitable for large area solar cells.

The holographic lithography technique has already been successfully utilized to enhance the

light extraction of light-emitting diodes. 2D square lattice photonic crystals with period from

300 - 700 nm can be fabricated on large areas with high throughput [4]. Among the competing

technologies, nanoimprint lithography is another alternative for high throughput and low cost

production. In an imprint process, a mold with nanostructure formed on the surface is pressed

into photoresist on a substrate. Structures with feature size of 25 nm have been demonstrated

[1]. After periodic patterns are formed on the photoresist, they can be transferred to ITO

using reactive ion etching. Fabrication of the structure we suggested is an aspect for further

experimental work.

Recommendations for Future Research

In light of the recent development of plasmonics, plasmon-assisted light-trapping schemes

have attracted much attention [5, 6]. It has been shown that localized surface plasmon on

metallic nanoparticle can concentrate light field and couple light into and out of dielectric

waveguide efficiently. We also run some preliminary simulations on free standing periodic gold

nanoparticle arrays. For triangular lattice of gold cylinder array with lattice constant of 1µm,

the height of the cylinder is 60 nm. The R/a ratios vary from 0.05 to 0.11, corresponding to

cylinder diameter of 100 to 220 nm. The absorption in the nanoparticle arrays with different
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radius is below 5% at most wavelengths (Fig. 4.1a). The diffraction is measured as differ-

ence between the non-specular and the specular transmission (Fig 4.1b). The diffraction is

minimized at Wood’s anomaly wavelengths, which can be predicted by the following equation

[8],

λmn =
2π
Gmn

=
a√

m2 + (2n−m)2/3
(4.1)

where Gmn is the reciprocal lattice vector of the triangular lattice. Also, there is no diffraction

beyond a
√

3/2.

Figure 4.1 a) The absorption and b) The diffraction in the gold nanopar-
ticle array with a = 1 µm, d = 60 nm and R/a of 0.05, 0.07,
0.09 and 0.11.

As we can see from figure 4.1, in some wavelength ranges, the gold nanoparticle array can

provide strong diffraction with minimal absorption. They can make good candidates for light-

trapping in thin film solar cells. The absorption and diffraction by gold nanoparticle array

residing on dielectric substrates are more complicated. With careful design, this plasmon-

assisted light-trapping scheme is very promising.
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